A review on extreme learning machine

نویسندگان

چکیده

Abstract Extreme learning machine (ELM) is a training algorithm for single hidden layer feedforward neural network (SLFN), which converges much faster than traditional methods and yields promising performance. In this paper, we hope to present comprehensive review on ELM. Firstly, will focus the theoretical analysis including universal approximation theory generalization. Then, various improvements are listed, help ELM works better in terms of stability, efficiency, accuracy. Because its outstanding performance, has been successfully applied many real-time tasks classification, clustering, regression. Besides, report applications medical imaging: MRI, CT, mammogram. The controversies were also discussed paper. We aim these advances find some future perspectives.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extreme Learning Machine: A Review

Feedforward neural networks (FFNN) have been utilised for various research in machine learning and they have gained a significantly wide acceptance. However, it was recently noted that the feedforward neural network has been functioning slower than needed. As a result, it has created critical bottlenecks among its applications. Extreme Learning Machines (ELM) were suggested as alternative learn...

متن کامل

Extreme Learning Machine

Slow speed of feedforward neural networks has been hampering their growth for past decades. Unlike traditional algorithms extreme learning machine (ELM) [5][6] for single hidden layer feedforward network (SLFN) chooses input weight and hidden biases randomly and determines the output weight through linear algebraic manipulations. We propose ELM as an auto associative neural network (AANN) and i...

متن کامل

On the kernel Extreme Learning Machine classifier

In this paper, we discuss the connection of the kernel versions of the ELM classifier with infinite Single-hidden Layer Feedforward Neural networks and show that the original ELM kernel definition can be adopted for the calculation of the ELM kernel matrix for two of the most common activation functions, i.e., the RBF and the sigmoid functions. In addition, we show that a low-rank decomposition...

متن کامل

On-Line Sequential Extreme Learning Machine

The primitive Extreme Learning Machine (ELM) [1, 2, 3] with additive neurons and RBF kernels was implemented in batch mode. In this paper, its sequential modification based on recursive least-squares (RLS) algorithm, which referred as Online Sequential Extreme Learning Machine (OS-ELM), is introduced. Based on OS-ELM, Online Sequential Fuzzy Extreme Learning Machine (Fuzzy-ELM) is also introduc...

متن کامل

On the kernel Extreme Learning Machine speedup

In this paper, we describe an approximate method for reducing the time and memory complexities of the kernel Extreme Learning Machine variants. We show that, by adopting a Nyström-based kernel ELM matrix approximation, we can define an ELM space exploiting properties of the kernel ELM space that can be subsequently used to apply several optimization schemes proposed in the literature for ELM ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Multimedia Tools and Applications

سال: 2021

ISSN: ['1380-7501', '1573-7721']

DOI: https://doi.org/10.1007/s11042-021-11007-7